ETH Zurich and the National University of Singapore have developed a new kind of bandage

Researchers from ETH Zurich and the National University of Singapore have developed a new kind of bandage that helps blood to clot and doesn’t stick to the wound. This marks the first time that scientists have combined both properties in one material.

“We did not actually plan this, but that is just how science works sometimes: you start researching one thing and end up somewhere else,” says ETH Professor Dimos Poulikakos. Together with scientists from his group and from the National University of Singapore, they developed and tested various superhydrophobic materials – which are, like Teflon, extremely good at repelling liquids such as water and blood. The goal was to find coatings for devices that come into contact with blood, for example heart-​lung machines or artificial heart devices.

One of the materials tested demonstrated some unexpected properties: not only did it repel blood, but it also aided the clotting process. Although this made the material unsuitable for use as a coating for blood pumps and related devices, the researchers quickly realised that it would work ideally as a bandage.

Promotes healing and can subsequently be easliy removed: a new kind of bandage coated with silicone and carbon nanofibres. (Visualisations: Li Z et al. Nature Communications 2019)

Repelling blood and achieving fast clotting are two different properties are both beneficial in bandages: blood-​repellent bandages do not get soaked with blood and do not adhere to the wound, so they can be later removed easily, avoiding secondary bleeding. Substances and materials that promote clotting, on the other hand, are used in medicine to stop bleeding as quickly as possible. However, to date, no materials that simultaneously repel blood and also promote clotting have been available – this is the first time that scientists have managed to combine both these properties in one material. They were also able to show that the coated gauze has an antibacterial effect, as bacteria have trouble adhering to its surface. In addition, animal  tests with rats demonstrated the effectiveness of the new bandage.

The potential areas of application are huge: They range from emergency medicine and surgery for avoiding major blood loss, to plasters for use in the home and on the go. ETH Zurich and the National University of Singapore have applied for a patent for the new material. In the meantime, the researchers need to refine and optimise the material before it can be used on humans. They also say they need to conduct further testing, first on larger animals and then on humans, to prove its effectiveness and harmlessness.

More information can be found here